The Extraction of Vegetation Points from LiDAR Using 3D Fractal Dimension Analyses

نویسندگان

  • Haiquan Yang
  • Wenlong Chen
  • Tianlu Qian
  • Dingtao Shen
  • Jiechen Wang
چکیده

Light Detection and Ranging (LiDAR), a high-precision technique used for acquiring three-dimensional (3D) surface information, is widely used to study surface vegetation information. Moreover, the extraction of a vegetation point set from the LiDAR point cloud is a basic starting-point for vegetation information analysis, and an important part of its further processing. To extract the vegetation point set completely and to describe the different spatial morphological characteristics of various features in a LiDAR point cloud, we have used 3D fractal dimensions. We discovered that every feature has its own distinctive 3D fractal dimension interval. Based on the 3D fractal dimensions of tall trees, we propose a new method for the extraction of vegetation using airborne LiDAR. According to this method, target features can be distinguished based on their morphological characteristics. The non-ground points acquired by filtering are processed by region growing segmentation and the morphological characteristics are evaluated by 3D fractal dimensions to determine the features required for the determination of the point set for tall trees. Avon, New York, USA was selected as the study area to test the method and the result proves the method’s efficiency. Thus, this approach is feasible. Additionally, the method uses the 3D OPEN ACCESS Remote Sens. 2015, 7 10816 coordinate properties of the LiDAR point cloud and does not require additional information, such as return intensity, giving it a larger scope of application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification and Extraction of Trees and Buildings from Urban Scenes Using Discrete Return LiDAR and Aerial Color Imagery

Airborne Light Detection and Ranging (LiDAR) is used in many 3D applications, such as urban planning, city modeling, facility management, and environmental assessments. LiDAR systems generate dense 3D point clouds, which provide a distinct and comprehensive geometrical description of object surfaces. However, the challenge is that most of the applications require correct identification and extr...

متن کامل

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

Automatic extraction of building roofs using LIDAR data and multispectral imagery

Automatic 3D extraction of building roofs from remotely sensed data is important for many applications including city modelling. This paper proposes a new method for automatic 3D roof extraction through an effective integration of LIDAR (Light Detection And Ranging) data and multispectral orthoimagery. Using the ground height from a DEM (Digital Elevation Model), the raw LIDAR points are separa...

متن کامل

Forest Characteristics and Effects on LiDAR Waveforms Modeling and Simulation

LiDAR (Light Detection And Ranging) remote sensing has been used to extract surface information as it can acquire highly accurate object shape characteristics using geo-registered 3D-points, and therefore, proven to be satisfactory for many applications, such as high-resolution elevation model generation, 3-D city mapping, vegetation structure estimation, etc. Large footprint LiDAR especially, ...

متن کامل

Dissertation: B. Koetz

Vegetation controls important ecosystem processes responsible for energy and mass exchanges within the terrestrial biosphere. A comprehensive characterization of the vegetation canopy is thus required to monitor the heterogeneous and dynamic terrestrial biosphere. Although Earth Observation provides detailed measurements of the Earth surface, it has been a challenge to produce reliable data set...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015